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Abstract 

This paper explains genetic algorithm for novice in this field. Basic philosophy of genetic 

algorithm and its flowchart are described. Step by step numerical computation of genetic 

algorithm for solving simple mathematical equality problem will be briefly explained. 

 

Basic Philosophy  

Genetic algorithm developed by Goldberg was inspired by Darwin's theory of evolution 

which states that the survival of an organism is affected by rule "the strongest species that 

survives". Darwin also stated that the survival of an organism can be maintained through the 

process of reproduction, crossover and mutation. Darwin's concept of evolution is then 

adapted to computational algorithm to find solution to a problem called objective function in 

natural fashion. A solution generated by genetic algorithm is called a chromosome, while 

collection of chromosome is referred as a population. A chromosome is composed from 

genes and its value can be either numerical, binary, symbols or characters depending on the 

problem want to be solved. These chromosomes will undergo a process called fitness 

function to measure the suitability of solution generated by GA with problem. Some 

chromosomes in population will mate through process called crossover thus producing new 

chromosomes named offspring which its genes composition are the combination of their 

parent. In a generation, a few chromosomes will also mutation in their gene. The number of 

chromosomes which will undergo crossover and mutation is controlled by crossover rate and 

mutation rate value. Chromosome in the population that will maintain for the next generation 

will be selected based on Darwinian evolution rule, the chromosome which has higher fitness 

value will have greater probability of being selected again in the next generation. After 

several generations, the chromosome value will converges to a certain value which is the best 

solution for the problem. 

 

The Algorithm  

In the genetic algorithm process is as follows [1]:  

Step 1. Determine the number of chromosomes, generation, and mutation rate and crossover 

rate value  

Step 2. Generate chromosome-chromosome number of the population, and the initialization 

value of the genes chromosome-chromosome with a random value  
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Step 3. Process steps 4-7 until the number of generations is met  

Step 4. Evaluation of fitness value of chromosomes by calculating objective function  

Step 5. Chromosomes selection  

Step 6. Crossover  

Step 7. Mutation 

Step 8. Solution (Best Chromosomes)  

 

The flowchart of algorithm can be seen in Figure 1 

 
 

Figure 1. Genetic algorithm flowchart 

 

 

Numerical Example  

Here are examples of applications that use genetic algorithms to solve the problem of 

combination. Suppose there is equality a + 2b + 3c + 4d = 30, genetic algorithm will be used 

to find the value of a, b, c, and d that satisfy the above equation. First we should formulate 
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the objective function, for this problem the objective is minimizing the value of function f(x) 

where f(x) = ((a + 2b + 3c + 4d) - 30). Since there are four variables in the equation, namely 

a, b, c, and d, we can compose the chromosome as follow: To speed up the computation, we 

can restrict that the values of variables a, b, c, and d are integers between 0 and 30. 

 

 
 

Step 1. Initialization  

For example we define the number of chromosomes in population are 6, then we generate 

random value of gene a, b, c, d for 6 chromosomes  

Chromosome[1] = [a;b;c;d] = [12;05;23;08]  

Chromosome[2] = [a;b;c;d] = [02;21;18;03]  

Chromosome[3] = [a;b;c;d] = [10;04;13;14]  

Chromosome[4] = [a;b;c;d] = [20;01;10;06]  

Chromosome[5] = [a;b;c;d] = [01;04;13;19]  

Chromosome[6] = [a;b;c;d] = [20;05;17;01] 

 

Step 2. Evaluation  

We compute the objective function value for each chromosome produced in initialization 

step:  

F_obj[1] = Abs(( 12 + 2*05 + 3*23 + 4*08 ) - 30)  

   = Abs((12 + 10 + 69 + 32 ) - 30)  

   = Abs(123 - 30)  

   = 93  

F_obj[2] = Abs((02 + 2*21 + 3*18 + 4*03) - 30)  

  = Abs((02 + 42 + 54 + 12) - 30)  

  = Abs(110 - 30)  

  = 80  

F_obj[3] = Abs((10 + 2*04 + 3*13 + 4*14) - 30)  

  = Abs((10 + 08 + 39 + 56) - 30)  

  = Abs(113 - 30)  

  = 83  

F_obj[4] = Abs((20 + 2*01 + 3*10 + 4*06) - 30)  

  = Abs((20 + 02 + 30 + 24) - 30) 

  = Abs(76 - 30)  

 = 46 

F_obj[5] = Abs((01 + 2*04 + 3*13 + 4*19) - 30)  

  = Abs((01 + 08 + 39 + 76) - 30)  

  = Abs(124 - 30)  

  = 94  

F_obj[6] = Abs((20 + 2*05 + 3*17 + 4*01) - 30)  

  = Abs((20 + 10 + 51 + 04) - 30)  

a b c d



  = Abs(85 - 30)  

  = 55 

 

Step 3. Selection  

1. The fittest chromosomes have higher probability to be selected for the next 

generation. To compute fitness probability we must compute the fitness of each 

chromosome. To avoid divide by zero problem, the value of F_obj is added by 1. 

Fitness[1] = 1 / (1+F_obj[1])  

           = 1 / 94  

           = 0.0106  

Fitness[2] = 1 / (1+F_obj[2])  

    = 1 / 81  

    = 0.0123  

Fitness[3] = 1 / (1+F_obj[3])  

           = 1 / 84  

    = 0.0119  

Fitness[4] = 1 / (1+F_obj[4])  

    = 1 / 47  

    = 0.0213 

Fitness[5] = 1 / (1+F_obj[5])  

    = 1 / 95  

    = 0.0105  

Fitness[6] = 1 / (1+F_obj[6])  

    = 1 / 56  

    = 0.0179  

Total = 0.0106 + 0.0123 + 0.0119 + 0.0213 + 0.0105 + 0.0179 

          = 0.0845  

 

The probability for each chromosomes is formulated by: P[i] = Fitness[i] / Total 

P[1] = 0.0106 / 0.0845  

        = 0.1254  

P[2] = 0.0123 / 0.0845  

        = 0.1456  

P[3] = 0.0119 / 0.0845  

        = 0.1408  

P[4] = 0.0213 / 0.0845  

        = 0.2521  

P[5] = 0.0105 / 0.0845  

        = 0.1243  

P[6] = 0.0179 / 0.0845  

        = 0.2118 

 

From the probabilities above we can see that Chromosome 4 that has the highest fitness, this 

chromosome has highest probability to be selected for next generation chromosomes. For the 



selection process we use roulette wheel, for that we should compute the cumulative 

probability values: 

C[1] = 0.1254  

C[2] = 0.1254 + 0.1456  

         = 0.2710  

C[3] = 0.1254 + 0.1456 + 0.1408  

         = 0.4118  

C[4] = 0.1254 + 0.1456 + 0.1408 + 0.2521  

         = 0.6639  

C[5] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243  

         = 0.7882  

C[6] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243 + 0.2118  

         = 1.0 

 

Having calculated the cumulative probability of selection process using roulette-wheel can be 

done. The process is to generate random number R in the range 0-1 as follows.  

R[1] = 0.201  

R[2] = 0.284  

R[3] = 0.099  

R[4] = 0.822 

R[5] = 0.398  

R[6] = 0.501  

 

If random number R[1] is greater than C[1] and smaller than C[2] then select 

Chromosome[2] as a chromosome in the new population for next generation: 

NewChromosome[1] = Chromosome[2]  

NewChromosome[2] = Chromosome[3]  

NewChromosome[3] = Chromosome[1]  

NewChromosome[4] = Chromosome[6]  

NewChromosome[5] = Chromosome[3]  

NewChromosome[6] = Chromosome[4] 

 

Chromosomes in the population thus became:  

Chromosome[1] = [02;21;18;03]  

Chromosome[2] = [10;04;13;14]  

Chromosome[3] = [12;05;23;08]  

Chromosome[4] = [20;05;17;01]  

Chromosome[5] = [10;04;13;14]  

Chromosome[6] = [20;01;10;06] 

 

In this example, we use one-cut point, i.e. randomly select a position in the parent 

chromosome then exchanging sub-chromosome. Parent chromosome which will mate is 

randomly selected and the number of mate Chromosomes is controlled using crossover_rate 

(ρc) parameters. Pseudo-code for the crossover process is as follows:  



begin  

     k← 0;  

     while(k<population) do 

     R[k] = random(0-1); 

     if(R[k]< ρc) then  

        select Chromosome[k] as parent;  

     end;  

     k = k + 1;  

     end;  

end; 

 

Chromosome k will be selected as a parent if R[k]<ρc. Suppose we set that the crossover rate 

is 25%, then Chromosome number k will be selected for crossover if random generated value 

for Chromosome k below 0.25. The process is as follows: First we generate a random number 

R as the number of population. 

R[1] = 0.191  

R[2] = 0.259  

R[3] = 0.760  

R[4] = 0.006  

R[5] = 0.159  

R[6] = 0.340 

 

For random number R above, parents are Chromosome[1], Chromosome[4] and 

Chromosome[5] will be selected for crossover. 

Chromosome[1] >< Chromosome[4]  

Chromosome[4] >< Chromosome[5]  

Chromosome[5] >< Chromosome[1] 

 

After chromosome selection, the next process is determining the position of the crossover 

point. This is done by generating random numbers between 1 to (length of Chromosome – 1). 

In this case, generated random numbers should be between 1 and 3. After we get the 

crossover point, parents Chromosome will be cut at crossover point and its gens will be 

interchanged. For example we generated 3 random number and we get: 

C[1] = 1  

C[2] = 1  

C[3] = 2 

 

Then for first crossover, second crossover and third crossover, parent’s gens will be cut at 

gen number 1, gen number 1 and gen number 3 respectively, e.g. 

Chromosome[1] = Chromosome[1] >< Chromosome[4]  

   = [02;21;18;03] >< [20;05;17;01]  

   = [02;05;17;01] 

Chromosome[4] = Chromosome[4] >< Chromosome[5]  

   = [20;05;17;01] >< [10;04;13;14]  



   = [20;04;13;14] 

Chromosome[5] = Chromosome[5] >< Chromosome[1]  

   = [10;04;13;14] >< [02;21;18;03]  

   = [10;04;18;03] 

 

Thus Chromosome population after experiencing a crossover process:  

Chromosome[1] = [02;05;17;01]  

Chromosome[2] = [10;04;13;14]  

Chromosome[3] = [12;05;23;08]  

Chromosome[4] = [20;04;13;14]  

Chromosome[5] = [10;04;18;03]  

Chromosome[6] = [20;01;10;06] 

 

Step 5. Mutation  

Number of chromosomes that have mutations in a population is determined by the 

mutation_rate parameter. Mutation process is done by replacing the gen at random position 

with a new value. The process is as follows. First we must calculate the total length of gen in 

the population. In this case the total length of gen is total_gen = 

number_of_gen_in_Chromosome * number of population  

= 4 * 6  

= 24 

 

Mutation process is done by generating a random integer between 1 and total_gen (1 to 24). 

If generated random number is smaller than mutation_rate(ρm) variable then marked the 

position of gen in chromosomes. Suppose we define ρm 10%, it is expected that 10% (0.1) of 

total_gen in the population that will be mutated: 

number of mutations = 0.1 * 24 

= 2.4  

≈ 2 

 

Suppose generation of random number yield 12 and 18 then the chromosome which have 

mutation are Chromosome number 3 gen number 4 and Chromosome 5 gen number 2. The 

value of mutated gens at mutation point is replaced by random number between 0-30. 

Suppose generated random number are 2 and 5 then Chromosome composition after mutation 

are: 

Chromosome[1] = [02;05;17;01]  

Chromosome[2] = [10;04;13;14]  

Chromosome[3] = [12;05;23;02]  

Chromosome[4] = [20;04;13;14]  

Chromosome[5] = [10;05;18;03]  

Chromosome[6] = [20;01;10;06] 

 

Finishing mutation process then we have one iteration or one generation of the genetic 

algorithm. We can now evaluate the objective function after one generation: 



Chromosome[1] = [02;05;17;01]  

F_obj[1] = Abs(( 02 + 2*05 + 3*17 + 4*01 ) - 30)  

  = Abs((2 + 10 + 51 + 4 ) - 30)  

  = Abs(67 - 30)  

  = 37 

Chromosome[2] = [10;04;13;14]  

F_obj[2] = Abs(( 10 + 2*04 + 3*13 + 4*14 ) - 30)  

  = Abs((10 + 8 + 33 + 56 ) - 30)  

  = Abs(107 - 30)  

  = 77 

Chromosome[3] = [12;05;23;02]  

F_obj[3] = Abs(( 12 + 2*05 + 3*23 + 4*02 ) - 30)  

  = Abs((12 + 10 + 69 + 8 ) - 30)  

  = Abs(87 - 30)  

  = 47 

Chromosome[4] = [20;04;13;14]  

F_obj[4] = Abs(( 20 + 2*04 + 3*13 + 4*14 ) - 30)  

  = Abs((20 + 8 + 39 + 56 ) - 30)  

  = Abs(123 - 30)  

  = 93 

Chromosome[5] = [10;05;18;03]  

F_obj[5] = Abs(( 10 + 2*05 + 3*18 + 4*03 ) - 30)  

  = Abs((10 + 10 + 54 + 12 ) - 30)  

  = Abs(86 - 30)  

  = 56 

Chromosome[6] = [20;01;10;06]  

F_obj[6] = Abs(( 20 + 2*01 + 3*10 + 4*06 ) - 30)  

  = Abs((20 + 2 + 30 + 24 ) - 30)  

  = Abs(76 - 30) 

  = 46 

From the evaluation of new Chromosome we can see that the objective function is decreasing, 

this means that we have better Chromosome or solution compared with previous 

Chromosome generation. New Chromosomes for next iteration are: 

Chromosome[1] = [02;05;17;01]  

Chromosome[2] = [10;04;13;14]  

Chromosome[3] = [12;05;23;02]  

Chromosome[4] = [20;04;13;14]  

Chromosome[5] = [10;05;18;03]  

Chromosome[6] = [20;01;10;06] 

 

These new Chromosomes will undergo the same process as the previous generation of 

Chromosomes such as evaluation, selection, crossover and mutation and at the end it produce 

new generation of Chromosome for the next iteration. This process will be repeated until a 



predetermined number of generations. For this example, after running 50 generations, best 

chromosome is obtained: 

Chromosome = [07; 05; 03; 01] 

This means that: a = 7, b = 5, c = 3, d = 1  

If we use the number in the problem equation: 

a + 2b + 3c + 4d = 30  

7 + (2 * 5) + (3 * 3) + (4 * 1) = 30  

We can see that the value of variable a, b, c and d generated by genetic algorithm can satisfy 

that equality. 
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